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Abstract

Currently, several human brain functional atlases are used to define the spatial constituents of the resting-state networks
(RSNs). However, the only brain atlases available are derived from samples of young adults. As brain networks are
continuously reconfigured throughout life, the lack of brain atlases derived from older populations may influence RSN
results in late adulthood. To address this gap, the aim of the study was to construct a reliable brain atlas derived only from
older participants. We leveraged resting-state functional magnetic resonance imaging data from three cohorts of healthy
older adults (total N = 563; age = 55–95 years) and a younger-adult cohort (N = 128; age = 18–35 years). We identified the major
RSNs and their subdivisions across all older-adult cohorts. We demonstrated high spatial reproducibility of these RSNs with
an average spatial overlap of 67%. Importantly, the RSNs derived from the older-adult cohorts were spatially different from
those derived from the younger-adult cohort (P = 2.3 × 10−3). Lastly, we constructed a novel brain atlas, called Atlas55+,
which includes the consensus of the major RSNs and their subdivisions across the older-adult cohorts. Thus, Atlas55+
provides a reliable age-appropriate template for RSNs in late adulthood and is publicly available. Our results confirm the
need for age-appropriate functional atlases for studies investigating aging-related brain mechanisms.
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Introduction
Resting-state functional magnetic resonance imaging (rs-fMRI)
has been instrumental in mapping the brain functional con-
nectome in health (Fox et al. 2005; Smith et al. 2009; Doucet
et al. 2011; Smith et al. 2015) and disease (Feltz and Miller
1996; Buckner et al. 2009; Tracy and Doucet 2015; Doucet et al.

2017; Dong et al. 2018; Sha et al. 2019). The brain functional
connectome can be defined as a multiscale partition in which
regions may be aggregated into networks, which in turn may
be combined into larger systems (Kiviniemi et al. 2009; Abou
Elseoud et al. 2011; Doucet et al. 2011). Previous work by us
and others suggest that the intermediate partition of the brain
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at the level of networks may be optimal to explain cognitive
activity and to identify reliable biomarkers of neuropsychiatric
and neurological disorders (van den Heuvel and Hulshoff Pol
2010; Abou Elseoud et al. 2011; Doucet et al. 2011; Doucet et al.
2012; Doucet et al. 2017; Salman et al. 2019), while limiting
multiple comparisons when compared to finer brain partitions
(Zalesky et al. 2010). At this level of brain organization, five
major resting-state networks (RSNs) and their subdivisions have
been typically identified across rs-fMRI studies: those involved
in internally guided, higher order mental functions as part of the
intrinsic system (default mode [DMN], executive control [ECN],
and salience [SAL] networks) and those supporting externally
driven, specialized sensory and motor processing as part of the
extrinsic system (visual [VIS] and sensorimotor [SMN] networks)
(De Luca et al. 2006; Smith et al. 2009; Doucet et al. 2011; Buckner
et al. 2013; Doucet et al. 2019). Each of these brain networks
relies on established white matter (WM) pathways (Toosy et al.
2004; Greicius et al. 2009; van den Heuvel et al. 2009) that
support the consistency of their spatiotemporal configuration
and functional roles (Damoiseaux et al. 2006; Smith et al. 2009;
van den Heuvel and Hulshoff Pol 2010; Doucet et al. 2011; Doucet
et al. 2019; Elliott et al. 2019).

Several brain functional atlases are currently available which
support reproducibility by harmonizing the RSN definition
across neuroimaging studies (Doucet et al. 2019). However, to
date, the only brain functional atlases available are derived
from samples of young healthy adults, typically below the
age of 40 years (Doucet et al. 2019). Nonetheless, changes in
brain function over the course of adulthood have been well-
documented and suggest that brain networks are continuously
reconfigured throughout adult life (Damoiseaux et al. 2008;
Meunier et al. 2009; He et al. 2013; Betzel et al. 2014; Damoiseaux
2017; Varangis, Razlighi, et al. 2019b; Yaple et al. 2019; Luo, Sui,
Abrol, Lin, et al. 2020b). To our knowledge, there is currently
no reference brain functional atlas derived from rs-fMRI data
from older adults, and this may undermine neuroimaging
efforts to characterize the brain functional connectome and
its cognitive role in late adulthood. Critically, differences in the
spatial composition of the RSNs derived from large samples
of younger versus older adults have yet to be systematically
investigated.

In this context, the current study focused on the spatial
definition of the five major RSNs (DMN, ECN, SAL, VIS, and SMN)
and their subdivisions in healthy adults aged 55 years and older.
The specific aims were: (1) to test the reproducibility of RSNs in
three large independent cohorts comprising a total of 563 older
healthy adults (age range: 55–95 years); accordingly, we analyzed
data from the Center for Aging and Neuroscience (CamCAN)
project (Shafto et al. 2014; Taylor et al. 2017), the Southwest Uni-
versity Adult Lifespan Dataset (SALD) (Wei et al. 2018) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(Jack Jr. et al. 2008; Petersen et al. 2010); (2) to identify differences
in the anatomical constitution of RSNs defined in the above
cohorts compared to those in younger adults (age range 18–35);
and (3) generate a reliable consensual RSN atlas to enhance the
reproducibility of template-defined RSNs in older adults.

Materials and Methods
Cohorts

Older-Adult Cohorts
We used data from the CamCAN (Shafto et al. 2014; Taylor et al.
2017), the SALD (Wei et al. 2018) and the ADNI datasets (Jack

Jr. et al. 2008; Petersen et al. 2010). In each cohort, we selected
healthy individuals aged 55 years and above for whom both
rs-fMRI and structural MRI data were available. This selection
resulted in a sample of 250 individuals for CamCAN (referred
to as “CamCAN55+”), 190 for SALD, and 134 for ADNI (details in
supplementary material). Following quality control of the imag-
ing data (described below), 11 participants across cohorts were
removed for excessive head motion. The total analysis sample
for the older individuals comprised 563 individuals, described
in Table 1 and Supplementary Figure S1.

Younger-Adult Cohort
A subset of the CamCAN cohort, referred to as “CamCAN35-”,
was used to test for differences between younger (18–35 years
old) and older (55 years and older) adults in RSN spatial com-
position. This age range was chosen to match the typical age
range of healthy participants used in currently available func-
tional atlases (Doucet et al. 2019). The CamCAN35− included
128 individuals. Following the same quality control process, we
excluded two individuals from CamCan35− (Table 1).

Resting-State fMRI Acquisition and Preprocessing

In the CamCAN cohort, rs-fMRI data were acquired while partici-
pants rest with their eyes closed on a 3 T Siemens TIM Trio scan-
ner with a 32-channel head coil with the following acquisition
parameters: TR/TE = 1970/30 msec, 32 axial slices, flip angle =78◦;
FOV =192 mm × 192 mm; voxel-size = 3 mm × 3 mm × 4.44 mm,
acquisition time = 8 min 40 sec, number of volumes: 261. More
information on the MRI sequences can be found in Taylor et al.
(2017).

In the SALD cohort, rs-fMRI data were acquired while
participants rest with their eyes closed on a 3 T Siemens Trio
scanner, using the following acquisition parameters (Wei et al.
2018): TR/TE = 2000/30 msec, 32 axial slices, flip angle = 90◦;
FOV = 220 mm × 220 mm; voxel-size = 3.4 mm × 3.4 mm × 4 mm,
acquisition time = 8 min, number of volumes: 242. More
information on the MRI sequences can be found in Wei et al.
(2018).

In the ADNI cohort, rs-fMRI data were acquired while
participants kept their eyes open. Acquisition tool place in
43 sites using 3 T scanners (General Electric [GE], Philips or
Siemens) and variable acquisition protocols (details in http://a
dni.loni.usc.edu/methods/documents/) that commonly used a
TR = 3000 sec, with 140–200 volumes. When multiple resting-
state fMRI datasets were available for a participant, the first one
was selected for analyses.

Regardless of the cohort, the rs-fMRI data were preprocessed
in an identical fashion, using SPM12 and the DPABI Toolbox (Yan
et al. 2016). Preprocessing procedures for the rs-fMRI datasets
included removal of the first three volumes, motion correction
to the first volume with rigid-body alignment; coregistration
between the functional scans and the anatomical T1-weighted
scan; spatial normalization of the functional images into Mon-
treal Neurological Institute stereotaxic standard space; spatial
smoothing within the functional mask with a 6-mm at full-
width at half-maximum Gaussian kernel; wavelet despiking
(Patel et al. 2014); linear detrending; and regression of motion
parameters and their derivatives (24-parameter model) (Friston
et al. 1996), as well as WM, CSF time series. The WM and CSF sig-
nals were computed using a component based noise reduction
method (CompCor, 5 principal components) (Behzadi et al. 2007).
Lastly, bandpass filtering was applied at 0.01–0.1 Hz (Cordes et al.
2001).
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Table 1 Cohort characteristics

Cohort N Age, years
(mean (SD))

Age range
(years)

Sex (%
females)

rs-fMRI TR
(sec)

rs-fMRI
volumes

rs-fMRI
instruction

CamCAN55+ 246 71.3 (9.3) 55–88 49% 1.97 261 Closed eyes
SALD 185 63.1 (6.5) 55–80 61% 2.00 242 Closed eyes
ADNI 132 78.9 (7.0) 62–95 50% 3.00 140–200∗ Open eyes
CamCAN35− 128 28.4 (4.8) 18–35 58% 1.97 261 Closed eyes

CamCAN, Cambridge Center for Ageing and Neuroscience; SALD, Southwest University Adult Lifespan Dataset; ADNI, Alzheimer’s Disease Neuroimaging Initiative;
TR, repetition time; rs-fMRI; resting-state functional magnetic resonance imaging sequence.
∗Number of volumes vary by ADNI site, see detail in supplementary material.

As previously mentioned, across the three older-adult
cohorts, we excluded 11 individuals who had excessive head
movement based on maximum transient (volume-to-volume)
head motion above 2 mm translation or 1◦ rotation. After
removing these individuals, we ensured that head motion, based
on the mean framewise displacement (Power et al. 2012) did not
correlate with age (r = 0.08). Following the same process, we
excluded two individuals from the CamCan35− cohort.

Resting-State Networks in the Older-Adult Cohorts

Resting-State Networks Identification in the Older-Adult Cohorts
We used a process validated by Naveau et al. (2012) to identify
reliable brain networks. First, for each individual within each
cohort, single-subject independent component analyses (ICAs)
were conducted 20 times with random initialization using the
Multivariate Exploratory Linear Optimized Decomposition into
Independent Components software, version 3.15, included in the
FMRIB Software Library (FSL) v6.0.3 (http://www.fmrib.ox.ac.uk/
fsl) (Smith et al. 2004). The number of independent components
(ICs) was estimated by Laplace approximation (Minka 2000). A
symmetric approach of the FastICA algorithm (Hyvarinen 1999)
was used to compute the ICAs. Second, for each repetition, we
used the multiscale clustering of individual component algo-
rithm (MICCA) to classify ICs into N groups (Naveau et al. 2012).
The number of groups was automatically estimated by the algo-
rithm (Naveau et al. 2012). Third, the Icasso algorithm (Himberg
et al. 2004) was used to select groups of reproducible ICs (i.e.,
groups with ICs that were present in at least 50% of the 20 rep-
etitions), which we identified as the “group-level components”
(Salman et al. 2019). Fourth, for each group-level component,
a voxel-wise t-score map of individual ICs was computed and
thresholded using a mixture model (P > 0.95, (Beckmann and
Smith 2004)). Lastly, we discarded group-level components if
their spatial map: (1) mainly covered nongray matter (i.e., CSF
and WM), or (2) included regions with strong signal attenua-
tion due to susceptibility artifacts (i.e., lower frontal and lower
temporal regions) (Supplementary Figs. S2–S4).

Spatial Overlap of Group-Level Components in Older-Adult Cohorts
Within each cohort, we mapped the spatial overlap across the
group-level components by computing an index that quantified
the number of group-level components overlapping at each
voxel. This voxel-wise index ranged from 1 (no spatial overlap,
the voxel is assigned to only one component) to n (where n is the
maximum number of components overlapping at a voxel).

As the goal of the current study was to create a reliable
functional atlas of RSNs, we created nonoverlapping group-
level components, on which we based the remaining analyses.

Accordingly, each brain voxel was assigned to the group-level
components with the highest t-score.

Reliability Analyses of the Group-Level Components in Older-Adult
Cohorts
As the spatial configuration of a brain network is strongly related
with its functional connectivity (Bijsterbosch et al. 2018), we
conducted supplementary analyses to assess the functional reli-
ability of each group-level component, in each cohort, following
the methods described in Labache et al. (2020) (Supplementary
Fig. S5). In each cohort, we generated a dendrogram based on
the average connectivity matrix between the group-level com-
ponents. The functional reliability of a group-level component
depended on the number of times it maintained the same
position in the dendrogram of each individual participant of the
same cohort. We created a reliability index (Q) for each group-
level component, where a score close to zero indicated perfect
functional reliability and a high score indicated high functional
unreliability (details in supplementary information and Supple-
mentary Fig. S5). We conducted Tukey’s fences tests to identify
and discard these highly unreliable group-level components.

Construction of the Major RSNs in Older-Adult Cohorts
We chose to focus on the major RSNs defined as: the DMN,
the ECN, the SAL, the SMN, and the VIS (Smith et al. 2009;
Doucet et al. 2011; Doucet et al. 2019) and their subdivisions and
examined their spatial definition across the three cohorts.

Following the identification of nonoverlapping and function-
ally reliable group-level components in each cohort, we pro-
ceeded to assigning them to the major RSNs of interest, namely
the DMN, ECN, SAL, VIS, and SMN. As reference for each network,
we used their spatial definition in the Consensual Atlas of
REsting-state Networks (CAREN) (Doucet et al. 2019). This atlas
was generated by our group and presents the spatial config-
uration of the major RSNs based on their common properties
across the most widely used brain functional atlases and as
such it represents the most reproducible spatial features of the
major RSNs currently available. This choice was also based on
the fact that, to the best of our knowledge, there are currently
no validated and reproducible RSNs from rs-fMRI data of a
large sample of older healthy individuals that we could use as
normative templates.

In each cohort, we computed the Dice coefficient (Dice
1945) to quantify the degree of spatial overlap between each
group-level component and each of the five aforementioned
CAREN RSNs. Components were then assigned to the RSN with
which they had the largest overlap (Supplementary Table S1).
We applied this process to each cohort separately to create
spatial maps of the major RSNs. We were thus able to construct
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a spatial map for each RSN. We used the Dice coefficient to test
the pairwise similarity between the same-labeled RSNs across
cohorts. Lastly, to ensure that the results did not depend on the
template used (i.e., CAREN), we also used the atlas created by
Yeo et al. (2011) for the RSN assignment.

Spatial Comparison of the Major RSNs Between Young
and Older Adults

Prior to testing for differences in the spatial constitution of RSNs
between older and younger adults we constructed the major
RSNs in the CamCAN35− by applying the same procedure as for
the older cohorts (Supplementary Fig. S12).

We then compared their respective RSNs to those derived
from the other two independent cohorts (ADNI and SALD). For
this, we used Dice’s coefficient to quantify the spatial similarity
of the RSNs in CamCAN35−, and in CamCAN55+ respectively, to
those of SALD and ADNI, and compared these pairwise coeffi-
cients (i.e., we compared the coefficients resulting from the RSN
comparison CamCAN55+ vs. SALD and ADNI to those resulting
from the RSN comparison CamCAN35− vs. SALD and ADNI).
This choice of approach was based on two major reasons: (1)
among the three cohorts, CamCAN was the largest and also
provided more reliable data (having the largest number of rs-
fMRI volumes (Elliott et al. 2019), Table 1); and (2) this approach
enabled us to account for differences in analytic approach, site,
and MRI acquisition parameters.

Generation of Atlas55+
The major RSNs identified in each of the three older-adult
cohorts were used as input data to create a consensual
atlas, named Atlas55+. For this, we used the function consen-
sus_similarity.m from the Network Community Toolbox (http://
commdetect.weebly.com), which constructs a representative
partition.

To test the spatial reproducibility of the major RSNs in
Atlas55+, we conducted supplementary analyses: (1) we
assigned each brain voxel to a network only if at least two of
the three older-adult cohorts assigned this voxel to the same
network. We then computed a spatial correlation between the
two versions of Atlas55+ using Pearson’s correlation analyses.
(2) We created a voxel-wise confidence map to quantify the
consistency of the network assignment between the RSNs of the
atlas and those from each of the three older-adult cohorts. This
voxel-wise index ranged from 0 (poor confidence, the network
assignment of a voxel in Atlas55+ differed from its network
assignment in all three cohorts) to 100% (high confidence, the
network assignment of a voxel in Atlas55+ was identical to its
network assignment in all three cohorts). Lastly, we compared
the RSNs of the atlas to those of CamCAN35− in order to quantify
the spatial differences between RSNs from younger adults and
older adults, computing Dice coefficients.

To identify the anatomical definition of each major RSN in
the atlas, we generated subject-specific versions using a dual
regression approach in FSL (Beckmann et al. 2009; Nickerson
et al. 2017). We then entered each network into a one-sample t
test, adding age, head motion (mean framewise displacement),
estimated total intracranial volume (TIV, measured using
FreeSurfer v6.0 (http://surfer.nmr.mgh.harvard.edu/)), and site
as covariates of no interest. Significant regions were reported at
a P < 0.05 after applying a family wise error (FWE) correction at
the voxel level (T > 5.3, cluster size > 20 voxels).

Subdivisions of the RSNs within Atlas55+
We then focused on the subdivisions of each RSN within
Atlas55+ to increase the spatial resolution of the atlas across
the three older-adult cohorts.

For each major RSN, we quantified the degree of spatial
overlap between the group-level components assigned to that
RSN across the three cohorts, using Dice coefficients (Supple-
mentary Table S1). Based on these coefficients, we constructed
a dendrogram and identified clusters with high spatial overlap
across independent group-level components, with one compo-
nent from each of the three cohorts (Supplementary Fig. S11).
Lastly, we created a spatial map for each of these clusters, which
displays the spatial characteristics of a subdivision of that RSN
(Supplementary Table S3). A voxel was identified as part of
that RSN subdivision if it was found in at least two out of the
three components. We chose to focus on clusters with contri-
butions from all three older-adult cohorts because this suggests
that these components were reliably found in each cohort and
therefore were minimally influenced by acquisition parameters.

Effects of Sex and Age on the Major five RSNs in the
Atlas55+
The effect of age on the spatial distribution of each major
RSN in the atlas (extracted from the dual regression) across all
individuals (total n = 563) was tested by conducting an analysis
of covariance, adding covariates of no interest: head motion, TIV,
and site. Sex differences in the spatial distribution of the RSNs in
the atlas were also assessed using age, head motion, TIV, and site
as covariates of no interest. Significant clusters are reported at
a P < 0.05 with FWE correction at the voxel level (T > 5.3, cluster
size > 20 voxels).

Results
Identification of Group-Level Components in the
Older-Adult Cohorts

In the CamCAN55+, SALD and ADNI cohorts, we respectively
identified a total of 27, 24 and 23 reproducible group-level
components (Supplementary Figs. S2–S4 and S8). For the
CamCAN55+ cohort, we found that 27% of the voxels were
assigned to a single group-level component, whereas less
than 0.5% of the voxels were assigned to a maximum of
nine group-level components. The degree of spatial overlap
between components was similar for the other two cohorts
(Supplementary Fig. S7). Regardless of cohort, the regions with
the highest overlap were located in the medial posterior cortex,
the dorso-medial prefrontal cortex and the lateral parietal
cortex (Supplementary Fig. S7).

Regardless of cohort, the functional reliability tests showed
that all group-level components had a similar degree of stability,
with no outlier, across individuals and in each cohort (Supple-
mentary Fig. S6). The reliability Q scores of each component did
not differ across cohorts (P > 0.1).

Construction and Reliability of the Major RSNs in the
Older-Adult Cohorts

The five RSNs constructed in each older-adult cohort (Fig. 1)
showed high spatial reproducibility across the three cohorts
with an average spatial overlap of 67% (mean range: 66–69%),
with the SAL having the lowest score (46%) and the VIS having
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Figure 1. Spatial map of the five major RSNs. (A) CamCAN55+, (B) SALD, and (C) ADNI. DMN, default mode network; SAL, salience network; ECN, executive control
network; VIS, visual network; SMN, sensorimotor network.

Figure 2. Spatial similarity of the RSNs across the cohorts. (A) Spatial similarity of

the RSNs across the older-adult cohorts. (B) Comparison of the spatial similarity
of the RSNs identified in the CamCAN35− versus the ADNI and SALD cohorts
and in the CamCAN55+ versus the ADNI and SALD cohorts. DMN, default mode
network; SAL, salience network; ECN, executive control network; VIS, visual

network; SMN, sensorimotor network.

the highest score (83%) (Fig. 2A). Supplementary Figure S9 shows
the voxel-wise confidence values with respect to the probability
of a voxel being assigned to the same-labeled RSN across the
three cohorts. The majority of voxels (83.5%) had confidence
values over 66%, indicating that at least two out of the three
cohorts had the same RSN assignment.

The choice of a reference atlas, CAREN or Yeo, minimally
affected the spatial definition of the RSNs. The average spatial

overlap of each RSN constructed based on CAREN versus each
RSN constructed based on Yeo’s atlas was 86% across the three
cohorts (CamCAN: 86% (sd = 15%), SALD: 85% (19%), ADNI: 86%
(9%); Supplementary Fig. S10).

Comparison of the Major RSNs between Older- and
Young Adults

We found that the major RSNs in the CamCAN35− (Supple-
mentary Fig. S12) were less similar to those identified in the
SALD and ADNI than in the CamCAN55+ (t = −4.2, P = 2.3 × 10−3;
Fig. 2B). The SMN and VIS, which cover primary cortices differed
the least, whereas the SAL network showed the largest spatial
difference between the younger and older cohorts.

Atlas55+
Atlas55+ is available at two resolution levels: at the lever of
the five major RSNs (DMN, ECN, SAL, SMN, and VIS, Fig. 3A)
and at the level of their 15 subdivisions that were also reli-
ably identified across the three older-adult cohorts (Fig. 4). The
anatomical description of each RSN and their subdivisions is
detailed in Supplementary Tables S2 and S3. The degree of
confidence in network assignment in Atlas55+ was high across
the three older-adult cohorts (Fig. 3B). The SMN and VIS were the
most reproducible networks with 77% and 93% of their voxels,
respectively being consistently assigned across all three cohorts.

As defined in Atlas55+, the SMN was comprised of the sen-
sory and motor regions (precentral and postcentral gyrus and
supplementary motor area), the primary auditory cortex (supe-
rior temporal cortex), and thalamus. The SMN was further par-
titioned into four subdivisions: the ventral and dorsal parts of
the pre- and postcentral gyri, the supplementary motor area and
the bilateral superior temporal gyri (auditory network). The VIS
network largely covered the occipital lobe, and was partitioned
into two subdivisions: the medial and posterior parts (Fig. 4).
Both SMN and VIS networks showed the largest spatial overlap
with their respective networks in younger adults as outlined in
CamCAN35− (spatial overlap: 69% and 84%, respectively; Fig. 5).

For the DMN, 51% of the network’s voxels showed consis-
tency across all three older-adult cohorts. In Atlas55+, the DMN
comprised the medial prefrontal cortex/ventral anterior cin-
gulate cortex (ACC), the precuneus/posterior cingulate cortex
(PCC), the inferior frontal cortex, the angular gyri, the mid-
dle temporal cortex, the hippocampi and amygdala, and some

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa321#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa321#supplementary-data
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Figure 3. Atlas55+: consensus brain atlas composed of the five major resting-state networks based on three cohorts of healthy individuals aged 55 years and above.
(A) Spatial map of the RSNs. (B) Voxel-wise confidence map in Atlas55+. This measure quantifies the probability that a voxel in an Atlas55+ network is assigned

to the same-label RSN in each of the three cohorts. DMN, default mode network; SAL, salience network; ECN, executive control network; VIS, visual network; SMN,
sensorimotor network.

bilateral cerebellar clusters. The DMN further included four
reliable subdivisions comprising the anterior DMN (ACC), the
core DMN (precuneus/PCC, medial prefrontal cortex, bilateral
angular gyri), and two left lateralized networks mostly covering

the inferior frontal gyrus, temporal poles and the posterior part
of the superior temporal gyrus, and dorsal medial prefrontal
cortex (Fig. 4). The whole DMN showed a 63% overlap with the
DMN in younger adults as defined in CamCAN35− (Fig. 5). The
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Figure 4. Reliable subdivisions of each of the five major RSNs across the three older-adult cohorts. (A) Four subdivisions of the DMN; (B) four subdivisions of the ECN;
(C) one subdivision of the SAL; (D) four subdivisions of the SMN; (E) two subdivisions of the VIS. Each color corresponds to one subdivision. Each subdivision is further

described in the supplementary material (Supplementary Table S3 and Supplementary Figure S11).

major spatial differences were localized in the posterior medial
temporal lobe—which was part of the DMN from CamCAN35−,
but not from Atlas55+ (Fig. 5).

For the ECN, 58% of the network’s voxels showed consis-
tency across all three older-adult cohorts. In Atlas55+, the ECN
included parts of the dorsolateral prefrontal cortex, the lateral
and medial parietal cortex, the posterior inferior temporal cor-
tex, the posterior parahippocampal gyrus and some bilateral
cerebellar clusters. The ECN further included four reliable sub-
networks comprising the right and left lateral parietal–frontal
cortex, as well as two posterior subdivisions mostly covering
the posterior parietal lobe and the medial temporal lobe. The

whole ECN showed a 60% overlap with the ECN in younger adults
as defined in CamCAN35−. The major differences involved the
additions of the posterior medial temporal lobe (lingual and
parahippocampal gyri) in the ECN from Atlas55+ (Fig. 5).

The SAL network emerged as the least reproducible net-
work: 25% of the network’s voxels were consistently assigned
to the SAL across the three older-adult cohorts. In Atlas55+, the
SAL was comprised of the anterior insula bilaterally, the dorsal
ACC, the supramarginal gyri, subcortical regions including the
putamen and thalamic nuclei, and bilateral cerebellar clusters.
We only found one reliable subdivision which mostly covered
the dorsal ACC and supramarginal gyri, bilaterally (Fig. 4). The

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa321#supplementary-data
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Figure 5. Spatial comparison of the major resting state networks between adults over the age of 55 years, as defined in Atlas55+, and younger adults (aged 18–35 years)
from the CamCAN35− cohort.

spatial overlap with the whole SAL in younger adults as defined
in CamCAN35− was the lowest with 30% and the regional differ-
ences were widespread (Fig. 5).

Associations of Sex and Age with the Spatial
Distribution of the Major RSNs in Atlas55+
Sex: we did not find any significant differences between males
and females on the spatial distribution of any major RSN in the
atlas.

Age: we found a negative regional association with age for
each of the major RSNs in the atlas (Fig. 6, Supplementary Table
S4). In detail, increasing age was associated with lower spatial
integrity of: (1) both anterior and posterior medial regions in
the DMN (Fig. 6A), (2) bilateral frontoparietal regions in the ECN
(Fig. 6B), (3) bilateral anterior insula and dorsal ACC in the SAL
(Fig. 6C), (4) bilateral superior temporal and postcentral gyri in
the SMN (Fig. 6D), and to a lesser degree (5) in the calcarine and
lingual gyri of the VIS (Fig. 6E).

In contrast, increasing age was associated with higher spatial
integrity of cerebellar regions in both the DMN and the ECN
(Supplementary Table S4). No other results were significant.

Discussion
This study investigated (1) the spatial definition of the major
RSNs in healthy individuals in late adulthood using rs-fMRI
data from three large independent cohorts of participants aged
55 years and above and; (2) differences in the spatial definition of
RSNs in late adulthood to those derived from healthy individuals
in early adulthood. We found a high reproducibility of the spatial
definition of the RSNs across the cohorts of older adults, but also

significant differences when compared to the RSNs of younger
adults. In response to these findings, we constructed Atlas55+,
a robust brain functional atlas derived from rs-fMRI of 563
healthy adults between the ages of 55 and 95 years, in order
to promote RSN reproducibility in future studies focusing on
older populations. The age cutoff of 55 years may be considered
arbitrary but there is currently no clear consensus on a specific
age that distinguishes middle to late adulthood. In response, we
followed the same age criterion as in ADNI, which is a landmark
initiative in North America to investigate brain organization in
older populations (Jack Jr. et al. 2008; Petersen et al. 2010).

Despite different MRI scanner types, acquisition parameters,
and sites, we demonstrated good reproducibility of the spatial
definition of the RSNs across the three older-adult cohorts.
Regardless of the cohort, the regions with the highest spatial
overlap between RSNs were localized in the medial prefrontal
cortex, the precuneus, and the lateral parietal cortex, which
have been described as brain hubs in young adults (Tomasi &
Volkow, 2011; Zuo et al. 2012). Participation in multiple networks
is thought to reflect an inherent feature of these associative
regions (Yeo et al. 2014). Although studies have reported a neg-
ative effect of aging on the strength of these regional hubs
(Damoiseaux 2017; Zhang et al. 2017), the current study suggests
that the variability in their location remains relatively unaltered
within older healthy populations.

Across the three older-adult cohorts, we found that the most
reproducible networks were the SMN and VIS networks. These
networks are mostly covering primary cortices, which are known
to have high structural-functional coherence (Luo et al. 2020a),
low interindividual variability in anatomical morphology (White
et al. 1997) and in resting-state functional connectivity (Franco
et al. 2013; Mueller et al. 2013; Li et al. 2017), and tend to

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa321#supplementary-data
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Figure 6. Clusters showing lower spatial integration with the rest of the RSN, with older age, across the three older-adult cohorts. Details of the clusters are in
Supplementary Table S3. Significance set up at P < 0.05 (FWE correction at the voxel level).

preferentially participate in single networks in line with their
circumscribed and specific functions (Yeo et al. 2014). In con-
trast, the SAL network showed the largest spatial differences
across the three older-adult cohorts. This was consistent with
the fact that we only identified one reliable subdivision of the
SAL, in contrast to the other high-order RSNs (i.e., DMN and
ECN) that showed four reliable subdivisions each. In studies of
individuals below the age of 40 years, the spatial definition and
role of the SAL network have been largely variable (Dosenbach
et al. 2007; Seeley et al. 2007; Smith et al. 2009; Yeo et al. 2011;
Shirer et al. 2012; Doucet et al. 2019) and this appears to be the
case in older adults too.

In line with what we hypothesized, we found age-related
alterations in the spatial composition of all five RSNs. The
association of RSN spatial definition with age was examined
in two different and complementary ways. First, by comparing
RSNs between older and younger adults and second by exam-
ining the effect of age within the older age-group by testing
its association with RSN constitution in the RSNs defined by
Atlas55+. Comparison of younger and older adults showed that
the SMN and VIS showed the smallest age-related differences,
whereas the DMN, ECN and SAL showed the highest degree of
age-related spatial reorganization. These findings accord with
those of prior studies which have consistently reported that
the functional connectivity within networks supporting higher
order functions is more affected by age than that of networks
supporting lower order functions (Mowinckel et al. 2012; He et al.
2013; Betzel et al. 2014). Also, a recent study by Luo, et al. (2020a)
showed more extensive age-related changes in the structural-
functional coherence of the associative cortex compared with
that of the unimodal cortex. The posterior medial temporal
regions—which are typically identified as part of the DMN in
younger adults (Buckner et al. 2008; Doucet et al. 2011; Buckner
and DiNicola 2019)—were instead assigned to the ECN in the
older adults. This finding is in agreement with the notion that
cognitive aging involves reorganization rather than loss of func-
tion (Reuter-Lorenz and Lustig 2005; Andrews-Hanna et al. 2007;
Yaple et al. 2019). This regional variability of the DMN and ECN is
also supported by the “the default to executive coupling” model
of cognitive aging proposed by Turner and Spreng (2015). This
model proposes a regional shift in the architecture of the DMN

and ECN to support crystallized cognition in later life (Spreng
et al. 2018). We also found large spatial differences in the SAL
between the younger and older adults, with the younger adults
showing a more restricte network (Seeley et al. 2007). As dis-
cussed above, the origin of this large interindividual variability
is unclear. Future investigations focusing on the SAL are needed
to determine whether the spatial differences may be related to
analytical or true biological differences between samples.

We found a significant association of age with the functional
integrity of the major RSNs in older adults, particularly in the
major regions of the DMN, ECN, and SAL. This finding was
expected as the age range across all older participants was
40 years. This was consistent with prior neuroimaging studies
that described an effect of aging on both brain structure and
function in populations over age 50 (Betzel et al. 2014; Chan
et al. 2014; Luis et al. 2015; Damoiseaux 2017; Varangis, Habeck,
et al. 2019a; Dima et al. 2020; Frangou et al. 2020; Luo, Sui,
Abrol, Lin, et al. 2020b). The overall negative impact of age
on each network largely confirms a reduction of functional
cohesiveness of the major brain networks, particularly those
supporting higher order cognitive functions (Damoiseaux et al.
2008; Mowinckel et al. 2012; He et al. 2013; Betzel et al. 2014;
Yaple et al. 2019). It is interesting to note that we also found a
positive association of age in cerebellar regions in both the DMN
and ECN, suggesting higher cerebellar-cortical integration in
these two networks with older age. Zhang et al. (2017) reported
similar findings of increased cerebellar-neocortical functional
connectivity with age in healthy participants between the
age of 12 and 79 years. This higher cerebellar-neocortical
integration has also been associated with successful higher
order cognitive activity in a healthy elderly population (Luis et al.
2015). Collectively, the findings reported in the current study
underscore the importance of age-adapted brain functional
atlases.

Moving forward, we propose Atlas55+ that has several
advantages to study brain activity in late adulthood. To the
best of our knowledge, Atlas55+ (1) is the only atlas based on
rs-fMRI datasets from three independent cohorts including a
total of 563 healthy participants above the age of 55 years; (2)
includes functional partitions of the brain at the level of the large
RSNs and their subdivisions; (3) accommodates differences in

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa321#supplementary-data
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neuroimaging acquisition parameters (i.e., different sites, MRI
scanners, and acquisition sequences); and (4) is independent
of sample composition. We identified 15 reproducible RSN
subdivisions (Fig. 4), which is in a typical range for subdivisions
reported in brain functional atlases based on younger adults’
rs-fMRI data (Yeo et al. 2011; Doucet et al. 2019). We note that
the subdivisions reported were those that were identified in all
three older-adult cohorts, to minimize potential influences by
differences in MRI acquisition parameters. Further studies are
needed to confidently identify the exact causes of variation in
these subdivisions between the cohorts.

Although Atlas55+ offers a realistic option for standardizing
the definition of RSNs for older adults, we acknowledge its
limitations. First, the age cutoff of 55 years follows the criterion
used in ADNI, which can be viewed as arbitrary. Second, age-
related changes in RSN configuration are likely to continue
throughout late life and these subtle changes may not be fully
captured by Atlas55+. The option of creating brain functional
atlases in older individuals to cover specific and smaller time
periods (i.e., for every decade past the 55th year) is challenging
at present as high-quality rs-fMRI datasets are scarce in older
participants, particularly in advanced old age. The Human Con-
nectome Project-Aging dataset may help achieve this goal when
it will be fully released (https://www.humanconnectome.org/stu
dy/hcp-lifespan-aging). Third, we constructed Atlas55+ using a
volumetric-based (ICA) rather than a surface-based approach.
We previously demonstrated that MICCA provided reliable net-
works (Naveau et al. 2012), and the analytic approach does not
significantly alter the reproducibility of the RSNs as long as they
are derived from a sample of at least 100 individuals (Doucet
et al. 2019), which is the case for each cohort analyzed in the
current study. Therefore, it is unlikely that this choice strongly
influenced the spatial definition of the RSNs. Fourth, we focused
on the five major RSNs (DMN, ECN, SAL, SMN, VIS) and their
subdivisions as these are the most reproducible networks in the
neuroimaging literature (van den Heuvel and Hulshoff Pol 2010;
Doucet et al. 2019; Elliott et al. 2019). As aging is associated with
reduced brain modularity (Meunier et al. 2009; Damoiseaux 2017;
Varangis, Razlighi, et al. 2019b), we cannot exclude the possibility
that the clustering approach did not influence the current find-
ings (Abou Elseoud et al. 2011). However, each of these five RSNs
have been consistently identified in aging studies (Damoiseaux
et al. 2008; Mowinckel et al. 2012; Betzel et al. 2014; Sala-Llonch
et al. 2015; Varangis, Habeck, et al. 2019a), suggesting that their
existence in older individuals is indisputable. Lastly, this study
specifically focused on the spatial characteristics of the RSNs;
other characteristics such as their dynamics or the association
with cognitive variability in late adulthood were not explored
because the necessary data were not available. In particular,
it will be important to investigate the cognitive impact on the
spatial definition of the Atlas55+ RSNs, in cognitively impaired
populations. In the current study, all individuals were identified
as healthy and showed very low variability in their general
functioning (Mini-mental state exam score: mean (std): 28.6 (1.5),
across the CamCAN55+ and ADNI cohorts) which prevented
further analyses to identify spatial variability in the RSNs as a
function of cognitive ability.

Conclusion
We presented a quantitative comparison of the spatial composi-
tion of the major RSNs and their reliable functional subdivisions
derived from healthy adults between the ages of 55 and 95 years

old and younger adults aged 18–35 years. We also identified the
spatial distribution of age-related changes in RSN definition.
Our results confirm the importance of age-appropriate brain
functional atlases for studies investigating brain mechanisms
related to aging. We propose that Atlas55+ can provide a repro-
ducible template of the major RSNs for late adulthood as it is
publicly available (https://www.researchgate.net/project/Brain-
functional-organization).

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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